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Abstract. In this paper, the Pontryagin’s maximum principle is used to
identify the reachability region when a bilinear system with controllable
damping and under the influence of a constant force is taken to the
origin. The bilinear control problem is partitioned into simpler linear
problems. Then, the optimal trajectory is obtained from the adequate
combination of the partial solutions. It is also shown that the minimum
time is obtained by reaching the origin with the damping active.

1 Introduction

Optimal control is an important area of control theory, which allows designing
more efficient and sophisticated systems. Optimal control studies the problem
of finding a control law for a given system such that a certain cost function is
minimized [1].

Optimization techniques have been widely studied by many authors as Pon-
tryagin (2], Bellmann (3], Bryson and Ho (4], Afanas'ev [5], among many other
mathematicians and scientists.

The maximum principle was given by L. S. Pontryagin in 1956. But the math-
ematical proof appeared a few years later in several works of V. G. Boltyanskii
and R. V. Gamkrelidze {2]. This methodology gives necessary conditions to find
the optimal control and optimal trajectories considering the initial states of the
system.

In previous paper (1] and (5] of one of the authors, the optimal control in
bilinear system with controllable damping has been studied. The main result
of this paper is that the optimal control of damping has two commutations at
most, but excitation force has only one commutation, if any.

It is important to remark that the models considered in these works can be
used to analyze fuel optimization in aircraft or automotive systems. The reader
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is referred to [6] and [7], where extensive lists of applications for bilinear systems
are presented.

Besides, many real-life processes can be analyzed through linear approxima-
tions. For instance, aerospace and marine navigation systems, thermic systems,
biology systems, chemistry and physics systems, robotics, among many others;
can be reasonably approximated by linear systems, at least locally (8,9]. For
that reason, we can expect a good performance of the linear controller at least
in the approximation region.

In [10], the authors derive a practical approach to obtain optimal controllers
based on the maximum principle. This approach is based on the integration of
optimal trajectory in inverse time with initial conditions in the origin at arriving
time T. In that work, it was considered a system with two controllers, showing
that one of the controllers has two commutations at most, while the other one
presents one comiutation, if any.

The present paper considers a bilinear system subject to constant external
force with controllable damping. Therefore, only one control is available. In that
sense, the reachability region is estimated and analyzed.

The rest of the paper is organized as follows. Section 2 presents the problem
of constructing the optimal controller for systems with controllable damping
under the influence of constant force. In sections 3 and 6 the problems without
damping and constant damping are analyzed, respectively. The estimation and
analysis of reachability region are given in section 5. Finally, some conclusions

are drawn in section 6

2 System with controllable damping subject to constant
force

Consider the dimensionless bilinear system of one degree of freedom of a
material point
&+ cut = 1, 1)
with ¢ > 0 as the controllable damping, u as the control, and initial conditions
z(0) = zo, £(0) = &o.
The control goal is to find the reachability region and valid input u(t) such
that
0<u®) <1,
and the system (1) converges to the origin, i.e., (T') = 0, Z(T) = 0; where T is
the minimum possible time.
This bilinear system can be rewritten as follows

Z) = T2 2)
2 = 1 - cuzs, (3)

where z, =z, %) =22 = % and & = &.
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The Hamiltonian can be defined as

H(z,u,¥) = o + 122 + ¢2(1 — cuz,),
while the adjoint variable vector ¢ = 1 2|7 is obtained from

oH
Yi=-— e (4)

On the other hand, the optimal control is obtained as follows (5,9

u = max (H) = max (—cyruzs) = 1 - sign(yora)

0<u<l 0<u<l 2 )
It is clear that control u has a commutation if adjoint variable 1, or velocity
z pass through zero.
Consequently, the optimal trajectory is determined when the following ag-
gregate nonlinear system is solved

T, =72 (6)
2:=2 =1+ c—-——1 B Slg;(wzh)zz )
%1 =0 (8)
o=—9 + Wzl'Lz(wﬂZ) (9)

subject to £1(0) = o, £2(0) = o, :(T) = 0 and z2(T) = 0, where T is the
arriving time to the origin.

As can be easily seen, the search for T must to be performed before the latter
system can be solved.

However, because of the existence of only one control, the reachability region
is reduced. This fact will be analyzed through the following sections by parti-
tioning the original problem in linear problems, using a similar method to that
presented in [10].

3 System without damping subject to constant force

Consider the dimensionless linear system of one degree of freedom without
damping

i=1, (10)
with z(0) = zo and z(0) = &, which can be rewritten as

i =22 (11)

Ty =1, (12)

where ry =z, ) = 29 =1 and 2, = 3.
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Notice that this system is not controllable. Therefore, initial state must sat-
isfy certain conditions in order to reach the origin. Such conditions will be clar-
ified below.

The solution for system (11)—(12) is

2.
z,(t) = 7 + ot + 2o (13)
zo(t) =t + Zo. (14)
The curves crossing through the origin are defined by integrating equations

(11)-(12) in inverse time and by assuming that at the arriving time (T°), the
system is at the origin, i.e., z(T) = z(T) = 0. Thus,

zat) = ETE (15)
za(t) = (£~ T). (16)

We use z.. to describe arrival curves, which later will become in commutation

curves for suitable values of *.
Consequently, system (10) can only arrive to the origin when initial state are

on curves (15)-(16). These are the conditions mentioned earlier.

4 System with damping and constant external force

Consider now the dimensionless linear system of one degree of freedom with
constat damping :

E+ex=1, (17)
with £(0) = zo and £(0) = %o, and where ¢ > 0 is the constant damping of the
system.

This system can be rewritten as
T) = T2 (18)
T2 =1-—cz2, (19)

where z, =z, ; =22 =% and 2 = .

Again, system (17) is not controllable. Therefore, initial state must satisfy
similar conditions to those given before in order to reach the origin.

The solution for system (18)—(19) is

t cto—1 _, cto—1
:!:1(t)=;—-—cTe ct 4+ (.1:0+ 2 ) (20)
1 cip-1
ty= = =0 -, -ct
.'L'g() c+ ¢ e, (21)

Once more, the arriving lines are obtained by integrating equations (18)-(19)
using inverse time and by assuming that at instant T (arriving time), the system
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is at the origin. Resulting,
t—T ~c(t=T) _
( ) 2 & - 1
c c
1 —c(t—
Tea(t) = (1 - e, (23)

Zci(t) =

(22)

with z.. defined as above.

As consequence, system (17) can only arrive to the origin when initial state
are on curves (22)-(23).

With this in mind, the problem of finding the optimal control for system (2)-
(3) is reduced to find the correct combination of the partial solutions derived o)
far.

5 Reachability region and optimal trajectories

In this section, the results obtained earlier are applied to determine the reach-
ability region and the optimal trajectory in order to take system (1) to the origin.

Figure 1 shows the reachability region lines for systems without damping
(c = 0) and with damping ¢ = 4. From this graphic, it can be readily concluded
that the origin can be only reach by a system with initial conditions between
curves without damping and with damping. This is due to the existence of only
one controller in system 1, which is the controllable damping.
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Fig. 1. Reachability and non-reachability regions for systems without damping c = 0
and with damping c = 4.

In words, if system (1) starts outside the reachability region we can only
activate (or deactivate) the controllable damping. As a result, the trajectory
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will be parallel to the arrival curve for the system with damping (or without
damping). Therefore, although velocity z2 will be zero at some instant, the
displacement z; will not be zero; and the system would not reach the origin.

However, if system (1) starts inside the reachability region we have two op-
tions:

1) At start, to deactivate the controllable damping. Then, wait for the intersec-
tion of the trajectory (for this case, curve without damping) and the curve
corresponding to the system with damping. At this very moment, the con-
trollable damping must to be activated. In this case the systems reach the
origin on the curve with damping.

2) At start, to activate the controllable damping. Then, wait for the intersection
of the trajectory (for this case, curve with damping) and the curve corre-
sponding to a damping-less system. At that very moment, the controllable
damping has to be deactivated. In this case the systems reach the origin on

the curve without damping.

Then, there are two trajectories for every staring point inside the reachability
region. This means that the system can arrive to the origin with u = 0 or u = 1.
In order to find the commutation time ¢; and arrival time T', we use a similar
approach to that presented in [10].

To determine ¢; and T, while reaching the origin on the curve with constant
damping, we need to solve the simultaneous equations generated by matching
equations (13), (22) and (14), (23), i.e.,

2 #1=T) e t1-T)_1
31 + oty + 30 = ——— + = (24)
1
t1+ o = 2(1 —e=anlh), (25)
with t; and T as unknowns.
After simple algebraic manipulation from equation (25), we have
] e(—c(tl—T)) =ct; + C(i?(], (26)
then, substituting (26) in (24), yields
s t1—T) cti+cd
§1-+zot1+zo=(l )i = (27)
=Tt &
c c ¢
Finally,
o ;
T=——2—1—C-'E0t1—czo~$o, (29)

tl — 1 (1 _e—c(t1+r'—;i+ciot1+czo+z'o)) i (30)

o
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Now, equations (29) and (30) can be solved by means of any mathematical
software.
Likewise, if we want to reach the origin on curve without damping, then

t; and T can be determined by solving simultaneous equations generated by
matching equations (15), (20) and (16), (21), i.e.,

t) cto—1 __, ctg—1 (t1 —T)?2
cT T Tt Ta )= B

1 o —
L cto — 1
c
Thus, substituting (32) in equation (31) gives
1 cig-—-1

T=t1———
[+

e t=¢ —T (32)

& ° (33)
t1 cto—1 _ P | 14 cio-lo-city2
? — oc_ze ety (zo + oc2 ) + (C 1.2 ) . (34)

As in the previous case, these equations can be solved using any mathematical
tool.

Now, we are able to compute the trajectories for any staring point inside the
reachability region.

Considering system (1) with ¢ = 4 and initial conditions 2o = 0.2 and z, =
—0.8. The trajectory to the origin, using the constant damping arrival curve,
appears in figure 2. For this case, t; = 0.1691 and T = 0.4839.

Fig. 2. Optimal trajectory with ¢ = 4, zo = 0.2 and %o = —0.8, reaching the origin on
the curve for constant damping.

Now, we solve the problem under the same conditions, but assuming that
the system reach the origin without damping. The trajectory for this situation is
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depicted in figure 3. Under this configuration, t; = 0.0653 and T' = 0.6238. This
suggests that the best option reaching the origin with damping. The following

table is intended to illustrate this fact.

.................................................

gt

Fig. 3. Another possible trajectory with ¢ = 4, 2o = 0.2 and 29 = —0.8, reaching the

origin without damping.

Table 1 shows the arrival times for different initial conditions inside the reach-
ability region, when the reaching curve is either without damping or with con-

stant damping.

Table 1. Optimal time for system (1) with ¢ = 4.

Reaching curve
Initial without |constant
conditions damping|damping
z(0) = 0.11031; £(0) = —0.8{ 0.3590 | 0.3587
z(0) = 0.15;£(0) = -0.8 | 0.5198 | 0.4106
z(0) = 0.2;£(0) = —-0.8 | 0.6238 | 0.4839
z(0) = 0.25; £(0) = -0.8 [ 0.7049 | 0.5719
z(0) = 0.3;£(0) = —0.8 | 0.7744 | 0.6947
z(0) = 0.32; 2(0) = —0.8 0.8 0.7999

Notice that in every case, reaching the origin with the controllable damping
activated results in the minimum time (1,5, 10].
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After a little deeper analysis, it can be deduced that if the initial conditions
are on one of the arriving curves then the system cannot leave such line in order
to reach the origin.

It is also important to remark that the first row of table 1 corresponds to
initial conditions very close of the arriving curve with constant damping ¢ = 4;
while the last row corresponds to initial condition very close of the arriving
curve without damping. Therefore, for the same initial velocity (zo = —0.8 in
this case), the minimum time is achieved when initial conditions are on the
constant damping arrival curve, from table 1 the shortest arrival time is around
T = 0.3587. On the other hand, the longest time is around T = 0.8, and it is
obtained when the initial conditions are on the arrival curve without damping.
So, if equation 1 represents an automobile brake system and the initial conditions
are inside the reachability region. It can be concluded that applying the brakes

at the end of the trajectory will result in stopping the vehicle after traveling the
desired distance using the minimum time.

Thus, for a given o < 0, we have a reachability region zpin(0) < z(0) <
ZTmax(0), as shown in figure 4.

ast

a4 ==~ -

-

eb-ceccecceccocnan=
=

Fig. 4. Reachability region for a given velocity £ < 0.

Therefore, on curve I (without damping) z(0) = ?-(291, from (15) and (16).

While, on curve IT (with constant damping) z(0) = — £ co - % In(1-c2(0)), from
(22) and (23). Resulting — %2 — % n(1 - ¢(0)) < 2(0) < Z2, for #(0) < 0.

This equation allows to compute valid values of £(0) in order to start inside
the reachability region for a given velocity £(0) < 0 and controllable damping
¢ > 0. Table 2 summarizes some results for different values of £(0) and c.Now,
it is clear that for a given £(0), Zmin(0) — 0 as ¢ — 0.
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Table 2. Estimation of reachability region.

1 2 10

1(0) xmin(o) Imnx(o) xmin(o) xln.\x(o) Imin(o) Iml\x(o)
70.5/0.0945| 0.125 |0.0767 [ 0.125 |0.0320 | 0.125
1 |0.3069| 0.5 [0.2253| 0.5 ]0.0760( 0.5
-10 | 7.6021 50 [4.2389 50 0.9538 50

6 Conclusions

In this paper, it has been analyzed the reachability region for a bilinear sys-
tem subject to constant force with controllable damping. The study was carried
out on the basis of the decomposition of the original problem in two parts,
namely: 1) systems without damping subject to constant force and 2) systems
with constant damping subject to constant force. The partition considered al-
lows determining the reachability region in a simpler and practical way. Figures
and tables illustrate the validity of the approach. It was also shown that the
activation of the controllable damping at the end of the trajectory results in
minimum arriving time. Another important outcome of this analysis is that the
inclusion of controllable damping in control systems may increase the durability
of the system, because the damping component is not active during the entire

trajectory of the material point.
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